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TWO-DIMENSIONAL PROBLEM OF PERIODIC LOADING

OF AN ELASTIC PLATE FLOATING ON THE SURFACE

OF AN INFINITELY DEEP FLUID

UDC 532.591:539.3:534.1I. V. Sturova and A. A. Korobkin

The action of external periodic pressure on an elastic plate floating on the surface of a fluid assumed
to be ideal and incompressible is examined by the method of normal modes in the linear formulation.
The behavior of the matrix of coefficients of the hydrodynamic load on the plate is considered in detail
for different frequencies. The behavior of the plate under localized periodic loading is compared for
the cases of a heavy fluid with a finite or infinite depth and for a weightless infinite-depth fluid.
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Introduction. The importance of studying the unsteady behavior of floating elastic plates under the action
of external loading is motivated by creation of large-scale floating platforms. The simplest example of the unsteady
action on the plate is a periodic external pressure. This problem was considered for a beam plate in the two-
dimensional formulation and for a circular plate in the three-dimensional case [1, 2]. The depth of the fluid was
assumed to be finite. The methods used (expansion in terms of vertical eigenmodes [1] and Wiener–Hopf method
[2]) did not allow extension of the results obtained in the entire frequency range to the case of an infinite depth of
the fluid.

The method of normal modes is used in the present paper, and the hydrodynamic load (added mass and
damping coefficients) is determined for each mode of plate oscillations. The behavior of the hydrodynamic load in
the limiting cases with high and low oscillation frequencies is examined. The results obtained are used to solve the
problem of the action of an external periodic pressure on a floating plate.

1. Formulation of the Problem. Let a thin elastic plate of width 2L and infinite length be floating
on the surface of an infinitely deep ideal incompressible fluid. The fluid surface not covered by the plate is free.
The ends of the plate are not fixed, and the plate draft is ignored. The plate is subjected to a periodic (with a
frequency ω) external pressure of the form P (x) exp (iωt) (x is the horizontal coordinate directed perpendicular to
the plate ends; x = 0 corresponds to the plate centerline).

The problem under consideration is two-dimensional. The fluid flow is assumed to be potential, and the
oscillations of the plate and the fluid are assumed to be periodic in time. The fluid-velocity potential φ(x, y, t) and
the normal deflection of the plate w(x, t) are sought in the form

φ(x, y, t) = iωΦ(x, y) exp (iωt), w(x, t) = W (x) exp (iωt),

where the y axis is directed vertically upward; y = 0 on the fluid surface.
Within the framework of the linear wave theory, the velocity potential satisfies the Laplace equation

∆Φ = 0 (|x| 6 ∞, y < 0)
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and the boundary conditions

∂Φ
∂y

= W (x) (|x| 6 L, y = 0),
∂Φ
∂y

= νΦ (|x| > L, y = 0), ν = ω2/g,

|∇Φ| → 0 (y → −∞), (1.1)

where g is the acceleration of gravity. The normal deflection of the plate is described by the equation

DW IV − ρ1h1ω
2W + ρgW − ρω2Φ = −P (x) (|x| 6 L, y = 0), (1.2)

where D is the cylindrical rigidity, ρ1 and h1 are the density and thickness of the plate, and ρ is the density of the
fluid.

The plate ends are free, which implies that the bending moment and the shear force are equal to zero:

W ′′ = W ′′′ = 0 (|x| = L).

The prime indicates the derivative with respect to x.
Far from the plate, we should satisfy the radiation condition, which means that the surface waves generated

by plate oscillations are diverging:

∂Φ
∂x

± iνΦ → 0 (x → ±∞). (1.3)

After that, we pass to the dimensionless variables (marked by the asterisk)

(x∗, y∗,W∗) =
(x, y,W )

L
, ω∗ = ω

√
L

g
, Φ∗ =

Φ
L2

, P∗ =
P

ρgL
.

The following dimensionless coefficients are introduced:

δ =
D

ρgL4
, χ =

ρ1h1

ρL
, K = νL.

2. Method of the Solution. In the dimensionless variables (the asterisks are omitted hereinafter), the
plate deflection W (x) is sought in the form of the expansion in terms of the normal modes of oscillation of a beam
with free ends in vacuum:

W (x) =
∞∑

n=0

bnWn(x). (2.1)

In this equation, the complex coefficients bn are to be determined, and the functions Wn(x) are nontrivial solutions
of the following spectral problem:

W IV
n = λ4

nWn (|x| 6 1),

W ′
2k = W2k+1 = 0 (x = 0), W ′′

n = W ′′′
n = 0 (|x| = 1).

These solutions have the form

W0 = 1/
√

2, W2k = D2k[cos (λ2kx) + S2k cosh (λ2kx)],

W1 =
√

3/2 x, W2k+1 = D2k+1[sin (λ2k+1x) + S2k+1 sinh (λ2k+1x)] (k = 0, 1, 2, . . .),
(2.2)

where Sn = cos λn/ cosh λn and Dn = 1/
√

1 + (−1)nS2
n. The eigenvalues of λn are found from the equation

tan λn + (−1)n tanh λn = 0 (n > 1), λ0 = λ1 = 0.

The functions Wn(x) form a complete orthogonal system for which
1∫

−1

Wn(x)Wm(x) dx = δnm,

where δnm is the Kronecker symbol.
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Using expansion (2.1), we can seek for the solution for Φ(x, y) in the form

Φ(x, y) =
∞∑

n=0

bnΦn(x, y). (2.3)

We substitute expansions (2.1) and (2.3) into Eq. (1.2), multiply the resultant relation by Wm(x), and
integrate the result with respect to x from −1 to 1. Using the properties of the functions Wm(x), we obtain an
infinite system of linear equations for determining the coefficients bm

[1 + δ(λm)4 − χK]bm −K
∞∑

n=0

bnΨnm = −Ym, (2.4)

where

Ψnm =

1∫
−1

Φn(x, 0)Wm(x) dx, Ym =

1∫
−1

P (x)Wm(x) dx. (2.5)

The values of Ψnm differ from zero only if both subscripts n and m are either odd or even. Therefore, system (2.4)
decomposes into two separate systems: for odd and even values of m.

3. Radiation Problem. To determine the coefficients Ψnm in (2.5), we have to find the functions Φn(x, 0),
which corresponds to solving the so-called radiation problem in terminology of the hydrodynamic theory of ship
motion. This problem was previously considered in [3–6] for the first two modes of plate oscillation (n = 0, 1),
which are further called rigid-body modes. These modes correspond to vertical and rotational oscillations of the
rigid plate floating on the fluid surface.

In the formulation considered, the radiation problem has the form

∆Φn = 0 (|x| 6 ∞, y < 0);

∂Φn

∂y
= Wn(x) (|x| 6 1, y = 0); (3.1)

∂Φn

∂y
= KΦn (|x| > 1, y = 0) (3.2)

with conditions in the far field similar to (1.1) and (1.3).
Far from the plate, according to the radiation condition (1.3), we have

Φn(x, y) → H±
n exp [K(y ∓ ix)] (x → ±∞),

where H±
n are the amplitudes of radiation potentials, and by virtue of the assumption on the symmetry properties

of the function Wn(x), we obtain

H−
2k = H+

2k, H−
2k+1 = −H+

2k+1 (k = 0, 1, 2, . . .). (3.3)

Here, we use the method described in [4] to solve the radiation problem. We introduce auxiliary func-
tions Fn(x, y) determined by the relation

∂Fn

∂y
=

∂Φn

∂y
−KΦn.

The functions Fn(x, y) satisfy the Laplace equation in the region occupied by the fluid and the boundary conditions

∂Fn

∂y
+ KFn = Un(x) (|x| 6 1, y = 0),

∂Fn

∂y
= 0 (|x| > 1, y = 0),

where

Un(x) = Wn(x) + K2

x∫
0

ξ∫
0

Wn(η) dη dξ + K(cn + dnx). (3.4)

The constants cn and dn are to be determined.
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We introduce the functions fn(x) defined on the segment |x| 6 1 by the relation

fn(x) =
∂Fn

∂y

∣∣∣
y=0

.

The functions fn(x) determine the hydrodynamic pressure acting on the plate. The solution for fn(x) can be
obtained from the integral equation

fn(x)− K

π

1∫
−1

fn(ξ) ln |x− ξ| dξ = Un(x) (|x| 6 1). (3.5)

According to (3.4), the functions fn(x) depend linearly on the constants cn and dn found from the following
equations:

cn =

1∫
0

[fn(x) + fn(−x)]G(x) dx; (3.6)

dn =

1∫
0

[fn(−x)− fn(x)]G′(x) dx. (3.7)

Here, the function G(x) can be conveniently represented as [7]

G(x) = [cos (Kx) Ci (Kx) + sin (Kx) Si (Kx)− lnx]/π − sin (Kx)/2− i cos (Kx),

where Si ( · ) and Ci ( · ) are the integral sine and cosine, respectively.
We can easily show that c2k+1 = d2k = 0 (k = 0, 1, 2, . . .), because the functions fn(x) possess the same

properties of symmetry as the functions Wn(x).
After solving the integral equation (3.5) and determining the complex constants cn and dn, the functions

fn(x) are found from relations (3.6) and (3.7).
The unknown quantities Ψnm are determined from the relation

Ψnm =
2
K

1∫
0

[Wn(x)− fn(x)]Wm(x) dx =
2
K

[
δnm −

1∫
0

fn(x)Wm(x) dx
]
. (3.8)

The amplitudes of the radiation potentials in the far field are

H+
2k = 2i

1∫
0

f2k(x) cos (Kx) dx,

H+
2k+1 = −2

1∫
0

f2k+1(x) sin (Kx) dx (k = 0, 1, 2, . . . ).

(3.9)

In the general case, the quantities Ψnm are complex; by analogy with the hydrodynamic theory of ship
motion, they can be presented as

Ψnm = Anm + iBnm, (3.10)

where the real values of Anm and Bnm are equivalent to the added mass and damping coefficients.
Some useful properties of these coefficients are known:
1) the matrix Ψnm is symmetric, i.e., Ψnm = Ψmn;
2) based on the law of conservation of energy, the damping coefficients are expressed via the amplitudes of

potentials in the far field with allowance for Eq. (3.3):

Bnm = H+
mH̄+

n (3.11)

(the bar indicates complex conjugation);
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3) the diagonal damping coefficients are always positive:

Bnn = |H+
n |2.

The values of Ψnm and H+
n depend on the frequency parameter K. It seems of interest to study their

behavior for K → 0 and K →∞.
4. Limiting Cases of Low and High Oscillation Frequencies. As K → 0, the free surface is equivalent

to the rigid wall, according to the boundary condition (3.2). It is known (see, e.g., [3, 6]) that the limiting value of
B00 in the accepted notation is

lim
K→0

B00(K) = 2.

It is of interest to note that this limiting value of the damping coefficient is valid for all two-dimensional contours
floating on the free surface and engaged into vertical oscillations under the condition that the length of the line of
intersection of the free surface equals the width of the plate considered [8].

The corresponding added mass coefficient has the logarithmic singularity

A00(K) → 2[3/2− γ − ln (2K)]/π (K → 0),

where γ = 0.577 21 . . . is the Euler constant.
For all other components of the matrix of the damping coefficients, we have

lim
K→0

Bnm(K) = 0 (n + m > 0),

and the limiting values of the corresponding components of the added mass matrix are finite and, according to [6],
are determined by the relation

Anm(0) =

1∫
−1

Wn(x)

1∫
−1

Wm(ξ)S(x− ξ) dξ dx, (4.1)

where

S(η) =
1
π

∞∫
0

cos (kη)
k

dk.

The value of A11(0) = 1.5/π is calculated explicitly.
For a high frequency of oscillations (K → ∞), the gravity can be neglected in the radiation problem, and

the boundary condition (3.2) acquires the following form for a weightless fluid:

Φn = 0 (|x| > 1, y = 0). (4.2)

The behavior of surface waves generated by high-frequency oscillations of the plate was considered in detail
in [5]. It was shown that the amplitudes of radiation potentials in the far field are

H±
n = i

√
π/K U±n exp (−iK − iπ/8) + O(K−1) (K →∞), (4.3)

where

U±n =
1
π

1∫
−1

Wn(x)
(1 + x

1− x

)±1/2

dx.

Using Eqs. (3.11) and (4.3), we obtain the asymptotic expression for the damping coefficients

Bnm =
π

K
U+

n U+
m + O(K−3/2) (K →∞). (4.4)

The values of U+
n have the form

U+
0 = 1/

√
2, U+

n = Dn[J0(λn) + SnI0(λn)] (n > 2)

for even modes and

U+
1 =

√
3/(2

√
2), U+

n = Dn[J1(λn) + SnI1(λn)] (n > 3)

for odd modes [Jm( · ) and Im( · ) are the ordinary and modified Bessel functions of the first kind of order m].
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The solution for the radiation potential on the free surface of a weightless fluid is also given in [5]:

Φn(x, 0) = − 1
π

1∫
−1

Wn(ξ) ln
|
√

(1 + ξ)/(1− ξ)−
√

(1 + x)/(1− x) |√
(1 + ξ)/(1− ξ) +

√
(1 + x)/(1− x)

dξ.

Nevertheless, it is more convenient to use the solution of the radiation problem for a weightless fluid presented
in [9, 10], which allows obtaining explicit expressions for all components of the added mass matrix.

According to [11], in the solution of the problem for the Laplace equation in the lower half-plane with the
coupled boundary conditions (3.1), (4.2), the horizontal component of fluid velocity on the plate has the form

∂Φn

∂x
=

1
π
√

1− x2
v.p.

1∫
−1

√
1− ξ2

ξ − x
Wn(ξ) dξ (|x| 6 1, y = 0),

where “v.p.” indicates the integral in the sense of its principal value.
The behavior of the radiation potential under the plate is calculated as

Φn(x, 0) =

x∫
−1

∂Φn

∂x
(ξ, 0) dξ,

because the values of the potential at the plate ends are equal to zero.
For rigid-body modes of plate oscillations, these solutions are well known (see, e.g., [5, 6]):

Φ0(x, 0) =
√

(1− x2)/2, Φ1(x, 0) = (x/2)
√

3(1− x2)/2 (|x| 6 1) (4.5)

and the corresponding values of the added masses are A00 = π/4 and A11 = 3π/32.
The expressions for the radiation potential under the plate have the form

Φn(x, 0) = Dn

{√
1− x2(Jn

0 + SnIn
0 )

+
∞∑

k=1

[
(−1)kJn

2k + SnIn
2k

][ sin(2k + 1)θ
2k + 1

− sin(2k − 1)θ
2k − 1

]}
(4.6)

for even elastic modes (n > 2) and the form

Φn(x, 0) = Dn

{
x
√

1− x2(Jn
1 + SnIn

1 )

+
∞∑

k=1

[
(−1)kJn

2k+1 + SnIn
2k+1

][ sin 2(k + 1)θ
2(k + 1)

− sin 2kθ

2k

]}
(4.7)

for odd elastic modes (n > 3). Here θ = arccos x, Jn
m = Jm(λn), and In

m = Im(λn).
Using solutions (4.5)–(4.7), we can determine all components of the added mass matrix: for even modes,

A0n = πDn(Jn
1 + SnIn

1 )/(λn

√
2 ),

Anm = πDnDm{Qnm
1 + Qnm

2 (4.8)

+ [Sn(λnJm
0 In

1 + λmJm
1 In

0 ) + Sm(λnJn
1 Im

0 + λmJn
0 Im

1 )]/(λ2
n + λ2

m)} (n, m > 2);

for odd modes,

A1n =
√

3/2 πDn(Jn
2 + SnIn

2 )/(2λn),

Anm = πDnDm{Qnm
3 −Qnm

4 (4.9)

+ [Sn(λnJm
1 In

0 − λmJm
0 In

1 ) + Sm(λmJn
1 Im

0 − λnJn
0 Im

1 )]/(λ2
n + λ2

m)} (n, m > 3).

Here, for n 6= m,

Qnm
j = Znm

j /(λ2
n − λ2

m) (j = 1, 4),
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Fig. 1. Behavior of the functions |fn(x)|/K along the plate for different values of the frequency parameter K:
(a) n = 4 and K = 0.2 (1), 0.5 (2), 1 (3), and 2 (4); (b) n = 5 and K = 0.2 (1), 0.5 (2), 1 (3), and 2 (4); (c) n = 4
and K = 10 (1), 100 (2), 1000 (3), and ∞ (4); (d) n = 5 and K = 10 (1), 100 (2), 1000 (3), and ∞ (4).

Znm
1 = λnPmn − λmPnm, Znm

2 = λnTmn − λmTnm, Znm
3 = λmPmn − λnPnm,

Znm
4 = λmTmn − λnTnm, Pnm = Jn

0 Jm
1 , Tnm = In

0 Im
1 ,

and for n = m,

Qnn
1 = [(Jn

0 )2 + (Jn
1 )2]/2, Qnn

2 = [(In
0 )2 − (In

1 )2]/2,

Qnn
3 = [(Jn

1 )2 − Jn
0 Jn

2 )]/2, Qnn
4 = [In

0 In
2 − (In

1 )2]/2.

5. Numerical Calculations. In the numerical solution of the integral equation (3.5), the segment
−1 6 x 6 1 is divided into 2N elements with a uniform step along the variable θ = arccos x. An additional
node is introduced at the mid-point inside each element, and three-point quadratic shape functions are used. With
allowance for the properties of evenness for the functions fn(x), the problem of their determination reduces to
solving a system of linear equations of the order 2N + 1 (or 2N) for even (or odd) numbers n. In the numerical
method used, integration in (3.6)–(3.9) is performed analytically.

For rigid-body modes, the results obtained by the proposed method are compared with tabular values of
A00, B00, A11, and B11 given in [6] for 0.01 6 K 6 20. For N = 100, the error was within 1%. All the results
presented below were obtained for N = 100; a further increase in N had practically no effect on the results.

In the present paper, we describe only some examples of solutions obtained for elastic modes with numbers
0 6 n 6 5. The dependences |fn(x)|/K for different values of the parameter K for n = 4 and 5 are plotted in Fig. 1.
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Fig. 2. Coefficients of hydrodynamic loading versus the frequency parameter K: (a, c) added mass coefficients
(solid curves) and their limiting values for K → 0 (dashed curves) and K → ∞ (dot-and-dashed curves); (b,
d) damping coefficients (solid curves) and their asymptotic dependences for K →∞ (dashed curves).
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Fig. 3. Amplitudes of normal deflections |W |/a for heavy (solid curves) and weightless (dashed
curves) fluids of infinite depth and the results of [1] for a finite-depth heavy fluid (dot-and-dashed

curves): ω
√

L/g = 3.162 (a), 4.111 (b), 5.060 (c), and 6.325 (d); the hatched band shows the region
where the pressure is applied.

For K = ∞, solutions (4.8) and (4.9) were used for even and odd modes, respectively. It should be noted that the
distribution of the functions fn(x) along the plate for low values of K qualitatively coincides with the behavior of
the normal modes Wn(x) described by relations (2.2). With increasing frequency, however, the amplitude of plate
deflection at its ends decreases and tends to zero as K →∞.

The dependences of some elements of the hydrodynamic loading matrix on the parameter K are shown in
Fig. 2 for even and odd modes. The horizontal axis is plotted in the logarithmic scale because of the large range
of variation of the parameter K. A comparison of the damping coefficients determined by Eq. (3.10) and by the
energy relation (3.11) reveals their good agreement. We used the limiting values of the added mass coefficients
determined by Eq. (4.1) for K → 0 and by Eqs. (4.8) and (4.9) for K → ∞. The latter limiting dependences for
hydrodynamic loading can be used only for very high values of frequency, as least for K > 103.

We also note that the positions of extrema in the dependences Anm(K) and Bnm(K) are shifted toward
higher frequencies with increasing numbers n and m. This means that the higher elastic modes are excited only
under external actions of sufficiently high frequencies.

The influence of periodic loading on an elastic plate was considered for the following distribution of external
pressure in dimensional variables:

P (x) = aρg[1− (x− x0)2/s2] (|x− x0| 6 s), P (x) = 0 (|x− x0| > s)

(a is a factor with a dimension of length). We assumed that |x0|+ s < L.
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The values of the initial parameters were the same as in [1]: D = 1.093 · 103 kg ·m2/sec2, ρ = 103 kg/m3,
ρ1h1 = 12.5 kg/m2, L = 2.5 m, and s = 0.5 m.

The system of linear equations (2.4) was solved by the reduction method, an infinite series being replaced
by a finite sum with the number of terms M . The calculations described involved M = 20 modes.

Figure 3 shows the amplitudes of normal deflections of the plate W/a for x0/L = 0.5 and four different
values of the dimensionless frequency ω

√
L/g. The solution for a weightless fluid involved only the added mass

coefficients determined by Eqs. (4.8) and (4.9). The dot-and-dashed curves show the amplitudes of deflections
under the action of the same load for a plate floating on the surface of a fluid with a finite depth equal to 0.25 m.
Comparing the solutions for a heavy fluid of finite and infinite depths, we should note their substantial discrepancy.
Normally, the amplitudes of plate deflections in the case of an infinitely deep fluid exceed the corresponding values
for a finite-depth fluid.

The solution for an infinitely deep weightless fluid yields satisfactory agreement with the solution for a heavy
fluid only if the frequency is fairly high (see Fig. 3d); for lower frequencies, the deflection is usually overpredicted.

Note, a typical feature for all solutions is that the deflection at the plate ends is much higher than the
deflection in the middle part of the plate.

Conclusions. The results presented show that the depth of the fluid has a significant effect on the behavior
of an elastic plate subjected to external periodic loading. The detailed study of the dependence of the elements of
the hydrodynamic loading matrix on frequency can be used to solve the problem of the action of a generic unsteady
load on a floating elastic plate.

This work was supported by the Council on Grants of the President of the Russian Federation for Leading
Scientific Schools (Grant No. NSh-902.2003.1) and by the Russian Foundation for Basic Research (Grant No. 02-
01-00739).
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